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Abstract: Significant research has been aimed at the development and control of teleoperator
systems due to both the practical importance and the challenging theoretical nature of the problem.
Two controllers are developed in this paper for a nonlinear teleoperator system that target coordi-
nation of the master and slave manipulators and passivity of the overall system. The first controller
is proven to yield a semi-global asymptotic result in the presence of parametric uncertainty in the
master and slave manipulator dynamic models. The second controller yields a global asymptotic
result despite unmeasurable user and environmental input forces. To develop each controller, a
transformation encodes the coordination and passivity objectives in the closed loop system. The
coordinated system is forced to track a dynamic system to assist in meeting all control objectives.
Finally, continuous nonlinear integral feedback terms are used to accommodate for incomplete sys-
tem knowledge for both controllers. Lyapunov-based techniques are used to prove that all control
objectives are met and that all signals are bounded.

1 Introduction

A teleoperator system consists of a user interacting with some type of input device (i.e., a master
manipulator) with the intention of imparting a predictable response by an output system (i.e., a slave
manipulator). Significant research has been aimed at the development and control of teleoperator
systems due to both practical importance and the challenging theoretical nature of this human-
robot interaction problem. Practical applications of teleoperation are motivated by the need for
task execution in hazardous environments (e.g., contaminated facilities, space, underwater), the
need for remote manipulation due to the characteristics of the object (e.g., size and mass of an
object, hazardous nature of the object), or the need for precision beyond human capacity (e.g.,
robotic assisted medical procedures). The teleoperator problem is theoretically challenging due
to issues that impact the user’s ability to impart a desired motion and a desired force on the
remote environment through the coupled master-slave system. Some difficult issues include the
presence of uncertainty in the master and slave dynamics, the ability to accurately model or measure
environmental and user inputs to the system, the ability to safely reflect desired forces back to the
user while mitigating other forces, and the stability of the overall system (e.g., as stated in [14], a

∗This work is supported in part by two DOC Grants, an ARO Automotive Center Grant, a DOE Contract, a
Honda Corporation Grant, and a DARPA Contract.
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stable teleoperator system may be destabilized when interacting with a stable environment due to
coupling between the systems).
The emphasis of some previous related research is to achieve ideal transparency by exactly trans-

ferring the slave robot impedance to the user. Typically, approaches that aim for ideal transparency
either require a priori knowledge of the environmental inputs to the slave manipulator, as in [4], or
estimate the impedance of the slave manipulator as in [6]. Some exceptions include the teleopera-
tor controllers aimed at low-frequency transparency developed in [11] and [23] that do not require
knowledge of the impedance of the user or environment. However, the approaches in [4], [6], [11],
and [23] are based on linear teleoperator systems with frequency-based control designs. A review
of other frequency-based approaches applied to linear teleoperator systems are given in [1], [8], [9],
[22], and [25]. In [7], an adaptive nonlinear control design is presented that achieves transparency
in the sense of motion and force tracking.
Other research has emphasized the stability and safe operation of the teleoperator system

through passivity concepts (e.g., [1]-[3], [12]-[14], and [17]-[19]). In [1], Anderson and Spong used
passivity and scattering criterion to propose a bilateral control law for a linear time-invariant tele-
operator system in any environment and in the presence of time delay. These results were then
extended in [18] and [19], where wave-variables were used to define a new configuration for force-
reflecting teleoperators. In [19], and more recently in [2] and [3], these methods where extended
to solve the position tracking problem. In [14], a passivity-based approach was used to develop a
controller that renders a linear teleoperator system as a passive rigid mechanical tool with desired
kinematic and power scaling capabilities. The development in [14] was extended to nonlinear tele-
operator systems in [12] and [13]. The controllers in [12] and [13] are dependent on knowledge of
the dynamics of the master and slave manipulator and force measurements.
In comparison to the previous literature, two controllers are developed in this paper for nonlinear

teleoperator systems that target coordination of the master and slave manipulators as well as
passivity of the overall system. The first controller is proven to yield a semi-global asymptotic
result in the presence of parametric uncertainty in the master and slave manipulator dynamic
models provided the user and environmental input forces are measurable; henceforth, referred to as
the MIF, (measurable input force) controller. The second controller yields a global asymptotic result
despite unmeasurable user and environmental input forces (UMIF) provided the dynamic models
of the respective manipulators are known. The novelty in developing each controller resided in the
three following steps. The first utilizes a transformation which encodes both the coordination and
passivity objectives within the closed loop system. Next, a dynamic trajectory generating system is
designed which assists in achieving overall system passivity as well as keeping all signals bounded in
the closed loop system. Finally, a continuous nonlinear integral feedback observer (see [20] and [24])
is exploited to compensate for the lack of system dynamics information or user and environmental
force measurements. For each controller, Lyapunov-based techniques are used to prove that these
three steps develop a stable passively coordinated teleoperator system.
The controllers developed in this work utilize the nonlinear dynamic model which offers a clear

advantage over past results for linear teleoperator systems ([4], [6], [11], and [23]). The MIF
controller developed in Section 3 compensates for unknown system parameters, which offers an
improvement over past works that require exact model knowledge (i.e. [4] and [6]). The UMIF
controller developed in Section 4 compensates for unavailable force measurement, which offers an
improvement over works that requires force measurements (i.e. [12] and [13]). Numerical simulation
results are presented for each controller in Sections 3.4 and 4.4, respectively.
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2 System Model

The dynamic model for a 2n-DOF nonlinear teleoperator consisting of a revolute n-DOF master
and a revolute n-DOF slave revolute robot are described by the following expressions [12]

γ {M1(q1(t))q̈1(t) + C1(q1(t), q̇1(t))q̇1(t) +B1q̇1(t) = T1(t) + F1(t)} (1)

M2(q2(t))q̈2(t) + C2(q2(t), q̇2(t))q̇2(t) +B2q̇2(t) = T2(t) + F2(t). (2)

In (1) and (2), γ ∈ R denotes a positive adjustable power scaling term, qi(t), q̇i(t), q̈i(t) ∈ Rn denote
the link position, velocity, and acceleration, respectively, ∀i = 1, 2 where i = 1 denotes the master
manipulator and i = 2 denotes the slave manipulator, Mi(qi) ∈ Rn×n represents the inertia effects,
Ci(qi, q̇i) ∈ Rn×n represents centripetal-Coriolis effects, Bi ∈ Rn×n represents the constant positive
definite, diagonal dynamic frictional effects, Ti(t) ∈ Rn represents the torque input control vector,
F1(t) ∈ Rn represents the user input force, and F2(t) ∈ Rn represents the input force from the
environment. The subsequent development is based on the property that the master and slave
inertia matrices are positive definite and symmetric in the sense that [15]

m1i ‖ξ‖2 ≤ ξTMi(qi)ξ ≤ m2i ‖ξ‖2 (3)

∀ξ ∈ Rn and i = 1, 2 where m1i, m2i ∈ R are positive constants, and ‖·‖ denotes the Euclidean
norm. The subsequent development is also based on the assumption that qi(t), q̇i(t) are measurable,
and that the inertia and centripetal-Coriolis matrices are second order differentiable.

3 MIF Control Development

For the MIF controller development, the subsequent analysis will prove a semi-global asymptotic
result in the presence of parametric uncertainty in the master and slave manipulator dynamic models
provided the user and environmental input forces are measurable. This development requires the
assumption that Fi(t), Ḟi(t), F̈i(t) ∈ L∞ ∀i = 1, 2 (precedence for this type of assumption is
provided in [12] and [14]).

3.1 Objective and Model Transformation

One of the two primary objectives for the bilateral teleoperator system is to ensure coordination
between the master and the slave manipulators in the following sense

q2(t)→ q1(t) as t→∞. (4)

The other primary objective is to ensure that the system remains passive with respect to the scaled
user and environmental power in the following sense [12]

∫ t

t0

(γq̇T1 (τ )F1(τ ) + q̇T2 (τ)F2(τ))dτ ≥ −c21 (5)

where c1 ∈ R is a bounded positive constant, and γ was introduced in (1). The passivity objective
is included in this section to ensure that the human can interact with the robotic system in a
stable and safe manner, and that the robot can also interact with the environment in a stable and
safe manner. To facilitate the passivity objective in (5), an auxiliary control objective is utilized.

3



Specifically, the coordinated master and slave manipulators are forced to track a desired bounded
trajectory, denoted by qd(t) ∈ Rn, in the sense that [13]

q1(t) + q2(t)→ qd(t). (6)

An additional objective is that all signals are required to remain bounded within the closed loop
system.
To facilitate the subsequent development, a globally invertible transformation is defined that

encodes both the coordination and passivity objectives as follows

x � Sq (7)

where x(t) �[xT1 (t) x
T
2 (t)]

T ∈ R2n, q(t) �[qT1 (t) qT2 (t)]
T ∈ R2n, and S ∈ R2n×2n is defined as follows

S �

[
I −I

I I

]
S−1 =

1

2

[
I I

−I I

]
(8)

where I ∈ Rn×n denotes the identity matrix. Based on (7), the dynamic models given in (1) and
(2) can be expressed as follows

M̄(x)ẍ+ C̄(x, ẋ)ẋ+ B̄ẋ = T̄ (t) + F̄ (t) (9)

where

M̄(x) = S−T
[

γM1 02n
02n M2

]
S−1 ∈ R2n×2n (10)

C̄(x, ẋ) = S−T
[

γC1 02n
02n C2

]
S−1 ∈ R2n×2n (11)

B̄ = S−T
[

γB1 02n
02n B2

]
S−1 ∈ R2n×2n (12)

T̄ (t) = S−T
[
γT T1 T T2

]T ∈ R2n (13)

F̄ (t) �

[
F̄1(t)
F̄2(t)

]
= S−T

[
γF1
F2

]
∈ R2n (14)

and 02n ∈ Rn×n denotes an n × n matrix of zeros. The subsequent development is based on the
property that M̄(x), as defined in (10), is a positive definite and symmetric matrix in the sense
that [15]

m̄1 ‖ξ‖2 ≤ ξTM̄(x)ξ ≤ m̄2 ‖ξ‖2 (15)

∀ξ ∈ R2n where m̄1, m̄2 ∈ R are positive constants. It is also noted that M̄(x) is second order
differentiable by assumption.
To facilitate the subsequent development and analysis, the control objectives can be combined

through a filtered tracking error signal, denoted by r(t) ∈ R2n, that is defined as follows

r � ė2 + α1e2 (16)

where e2(t) ∈ R2n is defined as follows

e2 � ė1 + α2e1 (17)
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where α1, α2 ∈ R are positive control gains, and e1(t) ∈ R2n is defined as follows

e1 � xd − x (18)

where xd(t) ∈ R2n is defined as follows

xd �
[
0Tn qTd (t)

]T
(19)

where 0n ∈ Rn denotes an n× 1 vector of zeros. Based on the definition of x(t) in (7) and e1(t) in
(18), it is clear that if ‖e1(t)‖ → 0 as t → ∞ then q2(t) → q1(t) and that q1(t) + q2(t) → qd(t) as
t→∞.

The desired trajectory qd(t) introduced in (6) and (19) is generated by the following expression

MT q̈d +BT q̇d +KT qd = F̄2. (20)

In (20), MT , BT , KT ∈ Rn×n represent constant positive definite, diagonal matrices, and F̄2(t) was
introduced in (14). Based on the assumption that F̄2(t) ∈ L∞, standard linear analysis techniques
can be used to prove that qd(t), q̇d(t), q̈d(t) ∈ L∞. The time derivative of (20) is given by the
following expression

MT

...
q d +BT q̈d +KT q̇d =

·

F̄ 2 . (21)

From (21), the fact that q̇d(t), q̈d(t) ∈ L∞, and the assumption that
·

F̄ 2 (t) ∈ L∞, it is clear that
...
q d(t) ∈ L∞. By taking the time derivative of (21), and utilizing the assumption that

··

F̄ 2 (t) ∈ L∞,
we can also show that

....
q d(t) ∈ L∞.

3.2 Closed-Loop Error System

Based on the assumption that the user and environmental forces are measurable, the control input
T̄ (t) of (13) is designed as follows

T̄ � ū− F̄ (22)

where ū(t) ∈ R
2n is an auxiliary control input. Substituting (22) into (9) yields the following

simplified system

M̄ẍ+ C̄ẋ+ B̄ẋ = ū. (23)

After taking the time derivative of (16) and premultiplying by M̄(x), the following expression can
be obtained

M̄ṙ = M̄
...
xd +

.

M̄
..
x +

d

dt

[
C̄ẋ+ B̄ẋ

]
−

.

ū +α2M̄ë1 + α1M̄ė2 (24)

where (16)-(18), and the time derivative of (23) were utilized. To facilitate the subsequent analysis,
the expression in (24) is rewritten as follows

M̄ṙ = Ñ +Nd − e2−
.

ū −1
2

.

M̄ r (25)
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where the auxiliary signal Ñ(x, ẋ, ẍ, t) ∈ R2n is defined as
Ñ � N −Nd (26)

where N(x, ẋ, ẍ, t) ∈ R2n is defined as

N � M̄
...
xd +

.

M̄ ẍ+ α2M̄ë1 + α1M̄ė2 + e2 +
d

dt

[
C̄ẋ+ B̄ẋ

]
+
1

2

.

M̄ r (27)

and Nd(t) ∈ R2n is defined as
Nd � N |x=xd, ẋ=ẋd, ẍ=ẍd (28)

= M̄(xd)
...
xd +

.

M̄ (xd, ẋd)ẍd +
d

dt

[
C̄(xd, ẋd)ẋd + B̄ẋd

]
.

Remark 1 To facilitate the subsequent analysis, the following upper bound can be developed for
Ñ (·)

∥∥∥Ñ
∥∥∥ ≤ ρ (‖z‖) ‖z‖ where z �

[
eT1 eT2 rT

]T

and the positive function ρ (‖z‖) is non-decreasing in ‖z‖ (see Appendix F for further details).

Based on (25), the auxiliary control input ū(t) introduced in (22) is designed as follows

ū � (ks + 1)

[
e2(t)− e2(t0) + α1

∫ t

t0

e2(τ )dτ

]
+ (β1 + β2)

∫ t

t0

sgn(e2(τ ))dτ (29)

where ks, β1, β2 ∈ R are positive control gains, and sgn(·) denotes the vector signum function.
The term e2(t0) in (29) is included so that ū(t0) = 0. The time derivative of (29) is given by the
following expression

.

ū= (ks + 1)r + (β1 + β2) sgn(e2). (30)

Substituting (30) into (25) yields the following closed-loop error system

M̄ṙ = −(ks + 1)r − (β1 + β2) sgn(e2) + Ñ +Nd − e2 −
1

2

.

M̄ r. (31)

Remark 2 Based on the expressions in (19), (28) and the fact that qd(t), q̇d(t), q̈d(t),
...
q d(t), and

....
q d(t) ∈ L∞, then ‖Nd(t)‖ and

∥∥∥Ṅd(t)
∥∥∥ can be upper bounded by known positive constants ς1, ς2 ∈ R

as follows

‖Nd(t)‖ ≤ ς1

∥∥∥Ṅd(t)
∥∥∥ ≤ ς2. (32)

3.3 Stability Analysis

Theorem 1 The controller given in (22) and (29), ensures that all closed-loop signals are bounded
and that coordination between the master and slave manipulators is achieved in the sense that

q2(t)→ q1(t) as t→∞ (33)

provided the control gain β1 introduced in (29) is selected to satisfy the following sufficient condition

β1 > ς1 +
1

α1
ς2 (34)

where ς1 and ς2 are given in (32), the control gains α1 and α2 are selected greater than 2, and ks is
selected sufficiently large with respect to the initial conditions of the system.
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Proof. See Appendix A.

Theorem 2 The controller given in (22) and (29) ensures that the teleoperator system is passive
with respect to the scaled user and environmental power.

Proof. See Appendix B.

3.4 Simulation Results

A numerical simulation was performed to demonstrate the performance of the controller given in
(22) and (29). The following 2-link, revolute robot dynamic model was utilized for both the master
and slave manipulators [21]

[
τ i1
τ i2

]
+

[
Fi1
Fi2

]
=

[
p1i + 2p3ic(qi2) + 2p4is(qi2) p2i + p3ic(qi2) + p4is(qi2)
p2i + p3ic(qi2) + p4is(qi2) p2i

] [
q̈i1
q̈i2

]

+

[
− (p3is(qi2)− p4ic(qi2)) q̇i2 − (p3is(qi2)− p4ic(qi2)) (q̇i1 + q̇i2)
(p3is(qi2)− p4ic(qi2)) q̇i1 0

] [
q̇i1
q̇i2

]

+

[
fd1i 0
0 fd2i

] [
q̇i1
q̇i2

]

(35)

where s(·) and c(·) denote the sin(·) and cos(·) functions. For the master manipulator, i = 1 and
p11 = 3.34 [kg·m2], p21 = 0.97 [kg·m2], p31 = 1.0392 [kg·m2], p41 = 0.6 [kg·m2], fd11 = 1.3 [Nm·sec],
and fd21 = 0.88 [Nm·sec]. For the slave manipulator, i = 2 and p12 = 2.67 [kg·m2], p22 = 1.455
[kg·m2], p32 = 0.929 [kg·m2], p42 = 0.537 [kg·m2], fd12 = 1.3 [Nm·sec], and fd22 = 0.88 [Nm·sec],
where the parameters are based on [21]. For this simulation, the positive adjustable power scaling
term was selected as γ = 1. The user input force vector was set equal to the following arbitrary
periodic time-varying signals

[
F11
F12

]
=

[
25 sin(1.1t)
35 sin(t)

]
. (36)

To emulate contact with the environment, a spring-like input force vector was selected as follows

[
F21
F22

]
=

[
−0.6q̇12 − q12
−0.6q̇22 − q22

]
. (37)

To assist in meeting the passivity control objective, the coordinated teleoperated system must follow
a desired trajectory which was generated by the system described by (20) and for this simulation
was selected as follows

F̄2(t) =

[
5 0
0 5

] [
q̈d1
q̈d2

]
+

[
3 0
0 3

] [
q̇d1
q̇d2

]
+

[
1 0
0 1

] [
qd1
qd2

]
(38)

where qd1(t) and qd2(t) denote the desired link positions, and F̄2(t) is equal to the following expression

F̄2(t) =
1

2
(γF1(t) + F2(t))

where F̄2(t) was defined in (14).
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The actual trajectory for the master and slave manipulators are demonstrated in Figure 1 for
controller gains selected as ks = 100 and β1 + β2 = 25. The link position tracking error between
the master and slave manipulators can be seen in Figure 2. From Figures 1 and 2, it is clear that
the coordination control objective is achieved. The actual trajectory for the coordinated system
(q1(t) + q2(t)) and the desired trajectory as defined by (38), are demonstrated in Figure 3. The
coordinated system versus the desired trajectory tracking error as defined by q1(t)+ q2(t)− qd(t), is
given in Figure 4. From Figures 3 and 4, it is clear that the coordinated system tracks the desired
trajectory. The control torque inputs for the master and slave manipulator are provided in Figures
5 and 6, respectively.
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0
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Time [sec]

[r
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d
s
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Figure 1: Actual trajectory for master (i.e., q1(t)) (–) and slave (i.e., q2(t)) (- -) manipulators for
Link 1 and Link 2.

4 UMIF Control Development

For the UMIF controller development, the subsequent analysis will prove a global asymptotic result
despite unmeasurable user and environmental input forces (UMIF) provided the dynamic models of
the respective manipulators are known. This development also requires the assumption that Fi(t),
Ḟi(t), F̈i(t) ∈ L∞ ∀i = 1, 2.

4.1 Objective and Model Transformation

One of the two primary objectives for the bilateral teleoperator system is to ensure coordination
between the master and the slave manipulators as in (4). The other objective is to ensure that
the system remains passive with respect to the scaled user and environmental power as in (5). To
assist in meeting the passivity objective the following desired trajectory, defined as xd(t) ∈ R2n, is
generated by the following dynamic system

M̄ẍd +BT ẋd +KTxd +
1

2

.

M̄ ẋd = F̂ . (39)
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Figure 2: Link position tracking error between the master and slave manipulators (i.e., q1(t)−q2(t)).
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Figure 3: Actual coordinated (i.e., q1(t) + q2(t)) trajectory (–) and desired (i.e., qd(t)) trajectory
(- -) for Link 1 and Link 2.
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Figure 4: The coordinated system versus the desired trajectory tracking error (i.e., q1(t) + q2(t)−
qd(t)).
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Figure 5: Master manipulator control input torque (i.e., τ 1(t)).
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Figure 6: Slave manipulator control input torque (i.e., τ 2(t)).

In (39), M̄ (x) was defined in (10), BT and KT ∈ R
2n×2n represent constant positive definite,

diagonal matrices, and F̂ (t) ∈ R2n is a subsequently designed nonlinear force observer, and xd(t) ∈
R
2n can be decomposed as follows

xd =
[
xTd1(t) xTd2(t)

]T
(40)

where xd1(t), xd2(t) ∈ Rn. Subsequent development will prove that F̂ (t) ∈ L∞. Based on this fact,
the development in Appendix C can be used to prove that xd(t), ẋd(t) ∈ L∞, then (39) can be used
to prove that ẍd(t) ∈ L∞ as shown later, the passivity objective is facilitated by ensuring that the
coordinated master and slave manipulators are forced to track a desired bounded trajectory xd2(t)
in the sense that

q1(t) + q2(t)→ xd2(t) (41)

where xd2(t) was defined in (40). An additional objective is that all signals are required to remain
bounded within the closed loop system.
To facilitate the subsequent development, a globally invertible transformation is defined that

encodes both the coordination and passivity objectives as follows

x � Sq +

[
xd1
0n

]
(42)

where x(t) �[xT1 (t) x
T
2 (t)]

T ∈ R2n, q(t) �[qT1 (t) qT2 (t)]
T ∈ R2n, xd1(t) ∈ Rn was defined in (40), the

zero vector 0n ∈ Rn and S ∈ R2n×2n was defined in (8). Based on (42), the dynamic models given
in (1) and (2) can be expressed as follows

M̄(x)ẍ− M̄(x)

[
ẍd1
0n

]
+ C̄(x, ẋ)ẋ− C̄(x, ẋ)

[
ẋd1
0n

]
+ B̄ẋ− B̄

[
ẋd1
0n

]
= T̄ (t) + F̄ (t) (43)

where M̄(x), C̄(x, ẋ), B̄, T̄ (t), and F̄ (t) were defined in (10)-(14).
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To facilitate the subsequent UMIF development and analysis, the control objectives can be
combined through a filtered tracking error signal denoted by r(t) ∈ R2n, that is defined as follows

r � ė2 + e2 (44)

where e2(t) ∈ R2n is now defined as follows

e2 � M̄ (ė1 + α2e1) (45)

where α2 ∈ R is a positive control gain, and e1(t) ∈ R2n was defined in (18) as follows

e1 � xd − x

where xd(t) was defined in (40).

4.2 Closed Loop Error System

To facilitate the development of the closed-loop error system for r(t), we first examine the error
system dynamics for e1(t) and e2(t). To this end, we take the second time derivative of e1(t) and
premultiply by M̄(x) to obtain the following expression

M̄ë1 = F̂ −BT ẋd −KTxd −
1

2

.

M̄ ẋd − T̄ − F̄ (46)

−M̄

[
ẍd1
0n

]
+ C̄ẋ− C̄

[
ẋd1
0n

]
+ B̄ẋ− B̄

[
ẋd1
0n

]

where (43) and (39) were utilized. Based on the assumption of exact model knowledge, the control
input T̄ (t) is designed as follows

T̄ � T̄1 −BT ẋd −KTxd −
1

2

.

M̄ ẋd (47)

−M̄

[
ẍd1
0n

]
+ C̄ẋ− C̄

[
ẋd1
0n

]
+ B̄ẋ− B̄

[
ẋd1
0n

]

where T̄1(t) ∈ R2n is an auxiliary control input. Substituting (47) into (46) yields the following
simplified expression

M̄ë1 = F̂ − F̄ − T̄1. (48)

Based on (48), the time derivative of e2(t) in (45) can be obtained as follows

ė2 =
.

M̄ ė1 + α2

.

M̄ e1 + α2M̄ė1 + F̂ − F̄ − T̄1. (49)

Based on the expression in (49), the auxiliary control input T̄1(t) is designed as follows

T̄1 �
.

M̄ ė1 + α2
.

M̄ e1 + α2M̄ė1. (50)

After substituting (50) into (49), the following can be written

ė2 = F̂ − F̄ . (51)
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Taking the time derivative of (51) yields the resulting expression

ë2 =
.

F̂ −
.

F̄ . (52)

The following error system dynamics can now be obtained for r(t) by taking the time derivative of
(44)

ṙ = r − e2+
.

F̂ −
.

F̄ (53)

where (44) and (52) were both utilized. Based on (53) and the subsequent stability analysis, the
proportional-integral like nonlinear force observer F̂ (t) introduced in (39) is designed as follows

F̂ � −(ks + 1)
[
e2(t)− e2(t0) +

∫ t

t0

e2(τ)dτ

]
− (β1 + β2)

∫ t

t0

sgn (e2(τ)) dτ (54)

where ks, β1, and β2 ∈ R are positive control gains, and sgn(·) denotes the vector signum function.
The expression given in (54) is designed such that F̂ (t0) = 0. The time derivative of (54) is given
by the following expression

.

F̂= −(ks + 1)r − (β1 + β2) sgn (e2) . (55)

Substituting (55) into (53) yields the following closed loop error system

ṙ = −e2−
.

F̄ −ksr − (β1 + β2) sgn (e2) . (56)

Remark 3 Based on (14) and the assumption that Fi(t), Ḟi(t), F̈i(t) ∈ L∞ ∀i = 1, 2, upper bounds
can be developed for

∥∥∥
.

F̄ (t)
∥∥∥ and

∥∥∥
..

F̄ (t)
∥∥∥ as follows

∥∥∥
.

F̄ (t)
∥∥∥ ≤ ς3

∥∥∥
..

F̄ (t)
∥∥∥ ≤ ς4 (57)

where ς3, ς4 ∈ R denote positive constants.

4.3 Stability Analysis

Theorem 3 The controller given in (47) and (50) ensures that all closed-loop signals are bounded
and that coordination between the master and slave manipulators is achieved in the sense that

q2(t)→ q1(t) as t→∞ (58)

provided the control gain β1, introduced in (54) is selected to satisfy the sufficient condition

β1 > ς3 + ς4, (59)

where ς3 and ς4 were introduced in (57).

Proof. See Appendix D.

Theorem 4 The controller given in (47) and (50), ensures that the teleoperator system is passive
with respect to the scaled user and environmental power.

Proof. See Appendix E.
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4.4 Simulation Results

A numerical simulation was performed for the controller given in (47) and (50). The 2-link, revolute
robot dynamic model utilized in (35) was utilized for both the master and slave manipulators. The
user input force vector in (36) and the environmental input force vector in (37) were also utilized.
To meet the passivity-based control objective, the coordinated teleoperated system must follow a

desired trajectory, which is generated from (39) using the same parameter values for the transformed
inertia matrix. The values for BT , KT ∈ R4×4 were set to the following values

BT = diag{5, 5, 5, 5}
KT = diag{25, 25, 25, 25}

where BT and KT are both diagonal matrices.
The actual trajectory for the master and slave manipulators are demonstrated in Figure 7 where

the control gains were selected as ks = 100, β1 + β2 = 100, and α2 = 200. The link position
tracking error between the master and slave manipulators can be seen in Figure 8. From Figures 7
and 8, it is clear that the coordination control objective is achieved. The actual trajectory for the
coordinated system (q1(t) + q2(t)) and the desired trajectory as defined in (39), are demonstrated
in Figure 9. The coordinated system versus the desired trajectory tracking error as defined by
q1(t) + q2(t)− xd2(t), is given in Figure 10. From Figures 9 and 10, it is clear that the coordinated
system tracks the desired trajectory. The output of the nonlinear force observer is provided in
Figure 11. The control torque inputs for both the master and slave manipulators are provided in
Figures 12 and 13, respectively.
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Figure 7: Actual trajectory for master (i.e., q1(t)) (–) and slave (i.e., q2(t)) (- -) manipulators for
Link 1 and Link 2.

5 Conclusions

Through the use of transformations, dynamic trajectory generations, and continuous nonlinear in-
tegral feedback terms, two controllers were proven through Lyapunov-based techniques to passively
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Figure 8: Link position tracking error between the master and slave manipulators (i.e., q1(t)−q2(t)).
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Figure 9: Actual coordinated (i.e., q1(t) + q2(t)) trajectory (–) and desired (i.e., qd(t)) trajectory
(- -) for Link 1 and Link 2.
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Figure 10: The coordinated system versus the desired trajectory tracking error (i.e., q1(t) + q2(t)−
xd2(t)).

0 5 10 15 20 25 30
−100

0

100

200

300

[N
m

]

Fhat
1
(t)

0 5 10 15 20 25 30
−50

0

50

Fhat
2
(t)

[N
m

]

0 5 10 15 20 25 30
−100

0
100
200
300

Fhat
3
(t)

[N
m

]

0 5 10 15 20 25 30
−50

0

50

Fhat
4
(t)

[N
m

]

Time [sec]

Figure 11: The output of the nonlinear force observer (i.e. F̂ (t)) .
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Figure 12: Master manipulator control input torque (i.e., τ1(t)).
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Figure 13: Slave manipulator control input torque (i.e., τ2(t)).
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coordinate the master and slave manipulators with respect to the scaled user and environmental
power despite incomplete system knowledge. Implementing either controller would provide the user
of the closed loop teleoperator system with a power scalable, coordinated master-slave tool that
provides safe and stable user feedback. The MIF controller was developed despite uncertainty in
the dynamics of the teleoperator system resulting in a semi-global asymptotic result, and the UMIF
controller was developed despite unmeasurable user and environmental force inputs resulting in a
global asymptotic result. Simulation results demonstrate for both controllers that the coordination
and tracking control objectives are met.
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A Proof of Theorem 1

Lemma 1 Let the auxiliary functions L1(t), L2(t) ∈ R be defined as follows

L1 � rT (Nd − β1sgn(e2)) (60)

L2 � −β2ė
T
2 sgn(e2)

where β1 and β2 were introduced in (29). Provided β1 is selected according to the following sufficient
condition

β1 > ς1 +
1

α1
ς2 (61)

where ς1 and ς2 are given in (32), and α1 is introduced in (16), then

∫ t
t0
L1(τ )dτ ≤ ξb1

∫ t
t0
L2(τ)dτ ≤ ξb2 (62)

where the positive constants ξb1, ξb2 ∈ R are defined as

ξb1 � β1

2n∑

i=1

|e2i(t0)| − eT2 (t0)Nd(t0) (63)

ξb2 � β2

2n∑

i=1

|e2i(t0)| .

Proof. After substituting (16) into (60) and then integrating, the following expression can be
obtained

∫ t

t0

L1(τ)dτ = α1

∫ t

t0

eT2 (τ) [Nd(τ)− β1sgn(e2(τ))] dτ (64)

+

∫ t

t0

deT2 (τ )

dτ
Nd(τ )dτ − β1

∫ t

t0

deT2 (τ)

dτ
sgn(e2(τ ))dτ .

After evaluating the second integral on the right side of (64) by parts and evaluating the third
integral, the following expression is obtained

∫ t

t0

L1dτ = α1

∫ t

t0

eT2

(
Nd −

1

α1

dNd

dτ
− β1sgn(e2)

)
dτ

+eT2 (t)Nd(t)− β1

2n∑

i=1

|e2i(t)|+ ξb1. (65)

The expression in (65) can be upper bounded as follows

∫ t

t0

L1dτ � α1

∫ t

t0

2n∑

i=1

|e2i(τ )|
(
|Ndi(τ)|+

1

α1

∣∣∣∣
dNdi(τ )

dτ

∣∣∣∣− β1

)
dτ (66)

+
2n∑

i=1

|e2i(t)| (|Ndi(t)| − β1) + ξb1.
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If β1 is chosen according to (34), then the first inequality in (62) can be proven from (66). The
second inequality in (62) can be obtained by integrating the expression for L2(t) introduced in (60)
as follows

∫ t

t0

L2(τ)dσ = −β2

∫ t

t0

ėT2 (τ )sgn(e2(τ))dτ (67)

= ξb2 − β2

2n∑

i=1

|e2i(t)| ≤ ξb2.

The following is the proof of Theorem 1.
Proof. Let the auxiliary functions P1(t), P2(t) ∈ R be defined as follows

P1(t) � ξb1 −
∫ t

t0

L1(τ)dτ ≥ 0 (68)

P2(t) � ξb2 −
∫ t

t0

L2(τ)dτ ≥ 0 (69)

where ξb1, L1(t), ξb2, and L2(t) were defined in (60) and (63). The results from Lemma 1 can be used
to show that P1(t) and P2(t) are non-negative. Let V (y, t) ∈ R denote the following nonnegative
function

V �
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
rTM̄r + P1 + P2 (70)

where y(t) ∈ R6n+2

y(t) �
[
zT

√
P1

√
P2
]T

(71)

where the composite vector z(·) ∈ R6n is defined as follows

z �
[
eT1 eT2 rT

]T
. (72)

Note that (70) is bounded by

W1(y) ≤ V (y, t) ≤W2(y) (73)

where

W1(y) = λ1 ‖y(t)‖2 W2(y) = λ2 ‖y(t)‖2 (74)

where λ1 �
1

2
min {1, m̄1} and λ2 � max

{
1, 1

2
m̄2

}
where m̄1 and m̄2 were introduced in (15).

After taking the time derivative of (70) the following expression can be obtained

V̇ = −α2e
T
1 e1 − α1e

T
2 e2 − rT (ks + 1) r (75)

+eT1 e2 + rT Ñ − rTβ2sgn(e2) + β2ė
T
2 sgn(e2)

where (16), (17), (31), (68), and (69) were utilized. To facilitate the subsequent analysis, the
following inequality can be developed from (26) - (28) (see Appendix F for further details)

Ñ ≤ ρ (‖z‖) ‖z‖ (76)
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where ρ (·) is a positive, non-decreasing function. By utilizing (16), (76), and the triangle inequality,
V̇ (t) can be upper bounded as follows

V̇ ≤ −α2e
T
1 e1 − α1e

T
2 e2 − rT (ks + 1) r (77)

+eT1 e1 + eT2 e2 + ρ (‖z‖) ‖r‖ ‖z‖ − α1e
T
2 β2sgn(e2).

By utilizing (72), V̇ (t) of (77) can be upper bounded as follows

V̇ ≤ −λ3 ‖z‖2 − ks ‖r‖2 + ρ(‖z‖) ‖r‖ ‖z‖ − α1β2

2n∑

i=1

|e2i| (78)

where λ3� min {α1 − 1, α2 − 1, 1}. After completing the squares for the second and third term on
the right side of (78), the following expression can be obtained

V̇ ≤ −
(
λ3 −

ρ2(‖z‖)
4ks

)
‖z‖2 − α1β2

2n∑

i=1

|e2i| . (79)

Provided α1 and α2 are selected to be greater than 2 and ks is selected according to the following
sufficient condition

ks ≥
ρ2(‖z‖)
4λ3

or ‖z‖ ≤ ρ−1
(
2
√

ksλ3

)
(80)

then the following inequality can be developed

V̇ ≤ W (y)− α1β2

2n∑

i=1

|e2i| (81)

where W (y) ∈ R denotes the following nonpositive function

W (y) � −β0 ‖z‖2 (82)

where β0 ∈ R denotes a positive constant. From (70)-(74) and (79)-(82) the regions D and S can
be defined as follows

D �
{
y ∈ R6n+2 | ‖y‖ < ρ−1

(
2
√

ksλ3

)}
(83)

S �
{
y ∈ D |W2(y) < λ1

(
ρ−1

(
2
√

ksλ3

))2}
. (84)

The region of attraction in (84) can be made arbitrarily large to include any initial conditions
by increasing the control gain ks (i.e. a semi-global stability result). Specifically, (74) and the region
defined in (84) can be used to calculate the region of attraction as follows

W2(y(t0)) < λ1

(
ρ−1

(
2
√

ksλ3

))2
(85)

=⇒ ‖y(t0)‖ <

√
λ1

λ2
ρ−1

(
2
√

ksλ3

)
,
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which can be rearranged as

ks ≥
1

4λ3
ρ2(

√
λ2

λ1
‖y(t0)‖). (86)

By using (72), (63), and (71) an explicit expression for ‖y(t0)‖ can be written as

‖y(t0)‖2 = ‖e1(t0)‖2 + ‖e2(t0)‖2 (87)

+ ‖r(t0)‖2 + ξb1 + ξb2.

From (70), (81), and (84)-(86), it is clear that V (y, t) ∈ L∞ ∀y(t0) ∈ S; hence e1(t), e2(t), r(t),
z(t), y(t) ∈ L∞ ∀y(t0) ∈ S. From (81) it is easy to show that e2(t) ∈ L1 ∀y(t0) ∈ S. The fact that
e2(t) ∈ L1 ∀y(t0) ∈ S can be used along with (17) to determine that e1(t), ė1(t) ∈ L1 ∀y(t0) ∈ S.
From (7), (18) and the assumption that qd(t) ∈ L∞, it is clear that x(t), q(t) ∈ L∞ ∀y(t0) ∈ S.
From (16) and (17) it is also clear that ė2(t), ė1(t) ∈ L∞ ∀y(t0) ∈ S. Using these boundedness
statements, it is clear that both

.

ū (t) ∈ L∞ ∀y(t0) ∈ S. From the time derivative of (17), and using
the assumption that q̈d(t) ∈ L∞ along with (23), it is clear that ū(t) ∈ L∞ ∀y(t0) ∈ S. The previous
boundedness statements can be used along with (31), (76), and Remark 2 to prove that ṙ(t) ∈ L∞
∀y(t0) ∈ S. These bounding statements can be used along with the time derivative of (82) to prove
that Ẇ (y(t)) ∈ L∞ ∀y(t0) ∈ S; hence, W (y(t)) is uniformly continuous. Standard signal chasing
arguments can be used to prove all remaining signals are bounded. A direct application of Theorem
8.4 in [10] can now be used to prove that ‖z(t)‖ → 0 as t→∞ ∀y(t0) ∈ S. From (72), it is also clear
that ‖r(t)‖ → 0 as t→∞ ∀y(t0) ∈ S. Based on the definitions give in (16) - (18), standard linear
analysis tools can be used to prove that if ‖r(t)‖ → 0 then ‖ė2(t)‖ , ‖e2(t)‖ , ‖ė1(t)‖, ‖e1(t)‖→ 0
as t → ∞ ∀y(t0) ∈ S. Based on the definition of x(t) in (7) and e1(t) in (18), it is clear that if
‖e1(t)‖→ 0 then ‖q1 (t)− q2 (t)‖ → 0 and q1 (t) + q2 (t) → qd(t) .

B Proof of Theorem 2

Proof. Let Vp(t) ∈ R denote the following nonnegative, bounded function

Vp �
1

2
q̇TdMT q̇d +

1

2
qTdKT qd. (88)

After taking the time derivative of (88), the following simplified expression can be obtained

V̇p = q̇Td F̄2 − q̇TdBT q̇d (89)

where (20) was utilized. Based on the fact that BT is a constant positive definite, diagonal matrix,
the following inequality can be developed

V̇p ≤ q̇Td F̄2. (90)

After integrating of both sides of (90), the following inequality can be developed

−c2 ≤ Vp(t)− Vp(t0) ≤
∫ t

t0

q̇Td (σ)F̄2(σ)dσ (91)
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where c2 ∈ R is a positive constant (since Vp(t) is bounded from the trajectory generation system
in (20)).

By using the transformation in (7), the left side of (5) can be expressed as

∫ t

t0

q̇T (τ)

[
γF1(τ)
F2(τ)

]
dτ =

∫ t

t0

ẋT F̄ dτ . (92)

By substituting the time derivative of (18) into (92), the following expression can be obtained

∫ t

t0

ẋT (τ )F̄ (τ )dτ =

∫ t

t0

q̇Td (τ)F̄2(τ)dτ −
∫ t

t0

ėT1 (τ )F̄ (τ )dτ (93)

where (19) was utilized. Based on (91), it is clear that
∫ t
t0
q̇Td (τ )F̄2(τ )dτ is lower bounded by −c2,

where c2 was defined as a positive constant. The fact that ė1(t) ∈ L1 from the proof for Theorem 1
and the assumption that F̄ (t) ∈ L∞ can be used to show that the second integral of (93) is bounded.
Hence, these facts can be applied to (92) and (93) to prove that

∫ t

t0

q̇T (τ )

[
γF1(τ )
F2(τ )

]
dτ ≥ −c23 (94)

where c3∈ R is a positive constant.

C UMIF Desired Trajectory Stability Analysis

Proof. Let V1(t) ∈ R denote the following nonnegative function

V1 �
1

2
eT2 e2 +

1

2
rT r + P1 + P2. (95)

Based on (95) and the closed loop error systems in (56), the proof of Theorem 3 can be followed

directly to prove that e1(t), e2(t), r(t), F̂ (t),
.

F̂ (t) ∈ L∞ as well as that e1(t), e2(t), and r(t)→ 0 as
t→∞ regardless of whether or not xd (t) , ẋd (t) , ẍd (t) ∈ L∞. Therefore the fact that F̂ (t) ∈ L∞
can be used in the subsequent analysis. As a means to prove that xd(t), ẋd(t), ẍd(t) ∈ L∞, let
V2(t) ∈ R denote the following nonnegative function

V2 � V3 + L (96)

where V3(t)∈ R denotes the following nonnegative function

V3 �
1

2
ẋTd M̄ẋd +

1

2
xTdKTxd (97)

where xd(t), ẋd(t) were defined in (40), whereKT was defined in (39), and M̄ (x) was defined in (10).
The expression given in (97) can be lower bounded by the auxiliary function, L(x̄) ∈ R, defined as
follows

L �
2εẋTd M̄xd

1 + 2xTd xd
≤ V3(t) (98)
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where ε ∈ R is a positive bounding constant selected according to the following inequality

0 < ε <
min {m̄1, λmin{KT}}

2mL∞

(99)

where λmin{KT}∈ R denotes the minimum eigenvalue of KT , m̄1 was defined in (15) and mL∞∈ R
denotes the induced infinity norm of the bounded matrix M̄(x). From (98) it is clear that V2(t) is
a non-negative function. Also, x̄(t)∈ R4n is defined as

x̄ � [ xTd ẋTd ]
T . (100)

The expression in (96) satisfies the following inequalities

λ̄1 ‖x̄‖2 ≤ V2(x̄) ≤ λ̄2 ‖x̄‖2 (101)

where λ̄1, λ̄2 ∈ R are positive constants defined as follows, provided ε is selected sufficiently small

λ̄1 �
1

2
min {m̄1, λmin{KT}} − εξc (102)

λ̄2 �
1

2
max {m̄2, λmax{KT}}+ εξc

where m̄1 and m̄2 were introduced in (15), and λmax{KT}∈ R denotes the maximum eigenvalue of
KT . In (102), ξc∈ R is a positive constant defined as follows

ξc = max

{
2mL∞

δa
, 2mL∞δa

}
(103)

where δa ∈ R is some positive constant, and mL∞ was introduced in (99).
To facilitate the subsequent analysis, the time derivative of (98) can be determined as follows

L̇ =
2εẍTd M̄xd + 2εẋ

T
d

.

M̄ xd + 2εẋ
T
d M̄ẋd

1 + 2xTd xd

−2ε
(
ẋTd M̄xd

)
4xTd ẋd

(1 + 2xTd xd)
2

. (104)

After utilizing (39), the expression in (104) can be written as

L̇ = −2εx
T
dKTxd

1 + 2xTd xd
− 2εx

T
dBT ẋd

1 + 2xTd xd
+

2εxTd F̂

1 + 2xTd xd
(105)

+
εxTd

.

M̄ ẋd

1 + 2xTd xd
+
2εẋTd M̄ẋd

1 + 2xTd xd
− 2ε

(
ẋTd M̄xd

)
4xTd ẋd

(1 + 2xTd xd)
2

.

The signal in (105) can be upper bounded as follows

L̇ ≤ −2ελmin{KT}
1 + 2xTd xd

‖xd‖2 +
2ελmax{BT}
1 + 2xTd xd

[
‖xd‖2 + ‖ẋd‖2

]

+
2ε

1 + 2xTd xd

[
δ2 ‖xd‖2 +

1

δ2

∥∥∥F̂
∥∥∥
2
]
+ εξ3ξm̄ ‖ẋd‖2 + εξm̄ξė (106)

+
εξm̄ξė

1 + 2xTd xd
‖ẋd‖2 +

2εm̄2

1 + 2xTd xd
‖ẋd‖2 + 8εm̄2 ‖ẋd‖2
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where the following properties were utilized

−2εx
T
dKTxd

1 + 2xTd xd
≤ −2ελmin{KT}

1 + 2xTd xd
‖xd‖2 (107)

−2εx
T
dBT ẋd

1 + 2xTd xd
≤ 2ελmax{BT}

1 + 2xTd xd

[
‖xd‖2 + ‖ẋd‖2

]
(108)

2εxTd F̂

1 + 2xTd xd
≤ 2ε

1 + 2xTd xd

[
δ2 ‖xd‖2 +

1

δ2

∥∥∥F̂
∥∥∥
2
]

(109)

εxTd

.

M̄ ẋd

1 + 2xTd xd
≤ εξ3ξm̄ ‖ẋd‖2 + εξm̄ξė +

εξm̄ξė
1 + 2xTd xd

‖ẋd‖2 (110)

2εẋTd M̄ẋd

1 + 2xTd xd
≤ 2εm̄2

1 + 2xTd xd
‖ẋd‖2 (111)

−2ε
(
ẋTd M̄xd

)
4xTd ẋd

(1 + 2xTd xd)
2

≤ 8εm̄2 ‖ẋd‖2 (112)

‖xd‖2
1 + 2xTd xd

≤ 1 (113)

‖xd‖2

(1 + 2xTd xd)
2
≤ 1. (114)

In (109), δ2∈ R denotes a positive bounding constant. In (110), ξ3∈ R denotes a positive bounding
constant defined as

‖xd‖
1 + 2xTd xd

≤ ξ3 (115)

and ξm̄, ξ ė∈ R denote positive bounding constants defined as
∥∥∥
.

M̄
∥∥∥ ≤ ξm̄ (‖ẋd‖+ ξ ė) . (116)

The inequality in (116) is obtained by using the facts that the inertia matrix is second order
differentiable and that e1(t)∈ L∞, (see proof of Theorem 3). In (111) and (112), m̄2∈ R is a
positive constant defined in (15).

Based on the development in (104)-(114), the time derivative of (96) can be upper bounded as
follows

V̇2 ≤ −λmin{BT} ‖ẋd‖2 −
2ελmin{KT}
1 + 2xTd xd

‖xd‖2 (117)

+
2ελmax{BT}
1 + 2xTd xd

[
‖xd‖2 + ‖ẋd‖2

]

+δ1 ‖ẋd‖2 +
1

δ1

∥∥∥F̂
∥∥∥
2

+
2ε

1 + 2xTd xd

[
δ2 ‖xd‖2 +

1

δ2

∥∥∥F̂
∥∥∥
2
]

+εξ3ξm̄ ‖ẋd‖2 + εξm̄ξė +
εξm̄ξė

1 + 2xTd xd
‖ẋd‖2

+
2εm̄2

1 + 2xTd xd
‖ẋd‖2 + 8εm̄2 ‖ẋd‖2
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where (39), (106), and the following inequalities were utilized

−ẋTdBT ẋd ≤ −λmin{BT} ‖ẋd‖2

ẋTd F̂ ≤ δ1 ‖ẋd‖2 +
1

δ1

∥∥∥F̂
∥∥∥
2

where δ1∈ R denotes a positive bounding constant. The expression in (117) can be simplified as
follows

V̇2 ≤ −‖ẋd‖2
[
λmin{BT} − δ1 −

2ελmax{BT}
1 + 2xTd xd

− εξ3ξm̄ −
εξm̄ξ ė

1 + 2xTd xd
− 2εm̄2

1 + 2xTd xd
− 8εm̄2

]

−‖xd‖2
[
2ελmin{KT}
1 + 2xTd xd

− 2ελmax{BT}
1 + 2xTd xd

− 2εδ2
1 + 2xTd xd

]

+

[
1

δ1

∥∥∥F̂
∥∥∥
2

+

[
2ε

1 + 2xTd xd

] [
1

δ2

∥∥∥F̂
∥∥∥
2
]
+ εξm̄ξė

]
. (118)

Provided BT , δ1, δ2, ε, and KT are selected to satisfy the following sufficient conditions

λmin{BT} > δ1 + ε (2λmax{BT}+ ξ3ξm̄ + ξm̄ξ ė + 10m̄2)

λmin{KT} > λmax{BT}+ δ2

the expression in (118) can be upper bounded as follows

V̇2 ≤ −
min {γa, γb}

λ̄2
V3 + ǫ2 (119)

where (100) was utilized, and γa, γb, ǫ2∈ R denote positive bounding constants.
From (96) - (98), and (101), and that F̂ (t)∈ L∞, the expression in (119) can be used with

the result from [5] to prove that x̄(t),xd(t), ẋd(t) ∈ L∞. Based on (39), and the fact that M̄(x),
.

M̄ (x, ẋ),and F̂ (t)∈ L∞ then ẍd(t) ∈ L∞.

D Proof of Theorem 3

Lemma 2 Let the auxiliary functions L1(t), L2(t) ∈ R be defined as follows

L1 � −rT
( .

F̄ +β1sgn(e2)
)

(120)

L2 � −β2ė
T
2 sgn(e2)

where β1 and β2 are defined in (54). Provided β1 is selected according to the following sufficient
condition

β1 > ς3 + ς4, (121)

where ς3 and ς4 were introduced in (57), then
∫ t
t0
L1(τ )dτ ≤ ξb1

∫ t
t0
L2(τ)dτ ≤ ξb2 (122)

where the positive constants ξb1, ξb2 ∈ R are defined as

ξb1 � β1
∑2n

i=1 |e2i(t0)| − eT2 (t0)
(
−

.

F̄ (t0)
)

ξb2 � β2
∑2n

i=1 |e2i(t0)| . (123)
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Proof. After substituting (44) into (120) and then integrating, the following expression can
be obtained

∫ t

t0

L1(τ )dτ =

∫ t

t0

eT2 (τ)
[
−

.

F̄ (τ )− β1sgn(e2(τ ))
]
dτ (124)

+

∫ t

t0

deT2 (τ)

dτ

(
−

.

F̄ (τ)
)
dτ − β1

∫ t

t0

deT2 (τ)

dτ
sgn(e2(τ))dτ.

After evaluating the second integral on the right side of (124) by parts and evaluating the third
integral, the following expression is obtained

∫ t

t0

L1dτ =

∫ t

t0

eT2 (τ)
(
−

.

F̄ (τ)+
..

F̄ (τ )− β1sgn(e2(τ ))
)
dτ

−eT2 (t)
.

F̄ (t)− β1

2n∑

i=1

|e2i(t)|+ ξb1. (125)

The expression in (125) can be upper bounded as follows

∫ t

t0

L1dτ �

∫ t

t0

2n∑

i=1

|e2i(τ)|
(∣∣∣

.

F̄ i (τ)
∣∣∣+

∣∣∣
..

F̄ i (τ )
∣∣∣− β1

)
dτ (126)

+
2n∑

i=1

|e2i(t)|
(∣∣∣

.

F̄ i (t)
∣∣∣− β1

)
+ ξb1.

If β1 is chosen according to (121), then the first inequality in (122) can be proven from (126). The
second inequality in (122) can be obtained by integrating the expression for L2(t) introduced in
(120) as follows

∫ t

t0

L2(τ)dσ = −β2

∫ t

t0

ėT2 (τ )sgn(e2(τ))dτ (127)

= ξb2 − β2

2n∑

i=1

|e2i(t)| ≤ ξb2.

The following is the proof of Theorem 3.
Proof. Let the auxiliary functions P1(t), P2(t) ∈ R be defined as follows

P1(t) � ξb1 −
∫ t

t0

L1(τ)dτ ≥ 0 (128)

P2(t) � ξb2 −
∫ t

t0

L2(τ)dτ ≥ 0 (129)

where ξb1, L1(t), ξb2, and L2(t) were defined in (120) and (123). The results from Lemma 2 can
be used to show that P1(t) and P2(t) are non-negative. Let V1(y, t) ∈ R denote the following
nonnegative function

V1 �
1

2
eT2 e2 +

1

2
rT r + P1 + P2 (130)
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where y(t)∈ R4n+2 is defined as

y(t) �
[
eT2 rT

√
P1

√
P2
]T

. (131)

Note that (130) is bounded according to the following inequalities

W3(y) ≤ V1(y, t) ≤W4(y) (132)

where

W3(y) = λ4 ‖y(t)‖2 W4(y) = λ5 ‖y(t)‖2 (133)

where λ4, λ5 ∈ R are positive bounding constants.
After taking the time derivative of (130), the following expression can be obtained

V̇1 = −eT2 e2 − ksr
T r − β2e

T
2 sgn(e2) (134)

where (44), (56), (128), and (129) were utilized. The expression in (134) can be rewritten as

V̇1 = −‖e2‖2 − ks ‖r‖2 − β2

2n∑

i=1

|e2i| . (135)

From (130) and (135), it is clear that V1(y, t) ∈ L∞; hence, e2(t) ∈ L∞∩L2∩L1, r(t) ∈ L∞∩L2,
and y(t) ∈ L∞ . Since e2(t), r(t) ∈ L∞, (44) and (55) can be used to prove that ė2(t),

.

F̂ (t) ∈ L∞.
Given that e2(t), r(t),

.

F̂ (t) ∈ L∞ and the assumption that
.

F̄∈ L∞, (53) can be used to prove that
ṙ(t) ∈ L∞. Barbalat’s Lemma can be utilized to prove

‖e2(t)‖ , ‖r(t)‖ → 0 as t→∞. (136)

From (44), (45), (136) and the fact that M̄(x) ∈ L∞, standard linear analysis arguments can be
used to prove that e1(t), ė1(t), and ė2(t) ∈ L∞, likewise that e1(t), ė1(t) ∈ L1, and that

‖e1(t)‖ , ‖ė1(t)‖ , ‖ė2(t)‖ → 0 as t→∞. (137)

From the fact that ė2(t) ∈ L∞ and the assumption that F̄ ∈ L∞ it is clear from (51) that F̂ (t) ∈
L∞. Since F̂ (t) ∈ L∞, (39) and the proof in Appendix C can be used to show that xd(t), ẋd(t),
ẍd(t) ∈ L∞. Using these facts along with (18) and its first time derivative, it is clear that x(t)

and ẋ(t) ∈ L∞. Since e1(t), ė1(t), M̄(x),
.

M̄(x) ∈ L∞, it is clear from (50) that T̄1(t) ∈ L∞, and
using previously stated bounding properties, T̄ (t) ∈ L∞. It is also possible to state that T̄1(t) ∈ L1,
where (50) was utilized. Based on the definition of x(t) in (42) and the previously stated bounding
properties, it is clear that ‖q1(t)− q2(t)‖ → 0 and q1(t) + q2(t) → qd(t). From these bounding
statements and standard signal chasing arguments, all signals can be shown to be bounded.

E Proof of Theorem 4

Proof. Let Vp2(t) ∈ R denote the following nonnegative, bounded function

Vp2 �
1

2
ẋTd M̄ẋd +

1

2
xTdKTxd. (138)
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After taking the time derivative of (138), the following simplified expression can be obtained

V̇p2 = ẋTd F̂ − ẋTdBT ẋd (139)

where (39) was utilized. Based on the fact that BT is a constant positive definite, diagonal matrix,
the following inequality can be developed

V̇p2 ≤ ẋTd F̂ . (140)

The following inequality can be developed after integrating (140)

−c4 ≤ Vp2(t)− Vp2(t0) ≤
∫ t

t0

ẋTd (σ)F̂ (σ)dσ (141)

where c4 ∈ R is a positive constant (since Vp2(t) is bounded from the trajectory generation system
in (39)).

To facilitate the subsequent analysis, the following expression can be obtained from integration

by parts
∫ t

t0

M̄ë1(τ)dτ = M̄ė1(t)− M̄ė1(t0)−
∫ t

t0

.

M̄ ė1(τ)dτ. (142)

Since M̄(x),
.

M̄ (x, ẋ) , ė1(t) ∈ L∞, and ė1(t) ∈ L1, then
∫ t
t0
M̄ë1(τ)dτ ∈ L∞. After integrating (48)

as follows
∫ t

t0

F̃ (τ )dτ = −
∫ t

t0

M̄ë1(τ)dτ −
∫ t

t0

T̄1(τ )dτ (143)

and using the fact that T̄1(t) ∈ L1 (see proof of Theorem 3) and the fact that
∫ t
t0
M̄ë1(τ )dτ ∈ L∞,

it is clear that F̃ ∈ L1, where F̃ (t) � F̄ (t)− F̂ (t).
By using the transformation in (42), the expression in (5) can be rewritten as follows

∫ t

t0

q̇T (τ )

[
γF1(τ)
F2(τ)

]
dτ =

∫ t

t0

ẋT F̄ dτ −
∫ t

t0

[
ẋTd1 0Tn

]
F̄ dτ . (144)

After substituting for the definition of F̃ (t) and the time derivative of (18) into (144) for F̄ (t) and
ẋ(t), respectively, the following expression can be obtained

∫ t

t0

ẋT F̄ dτ −
∫ t

t0

[
ẋTd1 0Tn

]
F̄ dτ =

∫ t

t0

ẋTd2(τ)F̃2(τ)dτ +

∫ t

t0

ẋTd2(τ)F̂2(τ)dτ (145)

−
∫ t

t0

ėT1 (τ )F̃ (τ )dτ −
∫ t

t0

ėT1 (τ)F̂ (τ)dτ.

Since ẋd(t) =
[
ẋTd1(t) ẋTd2(t)

]T ∈ L∞ and F̃ (t) =
[
F̃ T
1 (t) F̃ T

2 (t)
]T ∈ L1, it is clear that the

first integral expression in (145) is bounded and from (143) a lower negative bound exists. Based
on (141), it is clear that the second integral expression in (145) is bounded and a lower negative
bound exists. Since ė1(t) ∈ L∞ and F̃ (t) ∈ L1, it is possible to show that the third integral in (145)
is also bounded and a lower negative bound exists. Finally, because ė1(t) ∈ L1 and F̂ (t) ∈ L∞, it
is possible to show that the fourth integral in (145) is also bounded and a lower negative bound
exists. Hence, these facts can be applied to (144) and (145) to prove that

∫ t

t0

q̇T (τ )

[
γF1(τ )
F2(τ )

]
dτ ≥ −c25 (146)

where c5∈ R is a positive constant.
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F Upper Bound Development for MIF Analysis

To simplify the following derivations, (27) can be rewritten as follows

N � N(x, ẋ, ẍ, e1, e2, r,
...
x d) = M̄

...
x d (147)

+
.

M̄ ẍ+
d

dt

[
C̄ẋ+ B̄ẋ

]
+ e2

+M̄ (α1 + α2) r − M̄
(
α21 + α1α2 + α22

)
e2

+M̄α32e1 +
1

2

.

M̄ r

where (16) and (17) were utilized. To further facilitate the subsequent analysis, the following terms,
N(x, ẋd, ẍd, 0, 0, 0,

...
x d), N(x, ẋ, ẍd, 0, 0, 0,

...
x d), N(x, ẋ, ẍ, 0, 0, 0,

...
x d), N(x, ẋ, ẍ, e1, 0, 0,

...
x d) and

N(x, ẋ, ẍ, e1, e2, 0,
...
x d) are added and subtracted to the right-hand side of (26) as follows

Ñ = [N(x, ẋd, ẍd, 0, 0, 0,
...
x d)−Nd(xd, ẋd, ẍd, 0, 0, 0,

...
x d)]

+ [N(x, ẋ, ẍd, 0, 0, 0,
...
x d)−N(x, ẋd, ẍd, 0, 0, 0,

...
x d)]

+ [N(x, ẋ, ẍ, 0, 0, 0,
...
x d)−N(x, ẋ, ẍd, 0, 0, 0,

...
x d)] (148)

+ [N(x, ẋ, ẍ, e1, 0, 0,
...
x d)−N(x, ẋ, ẍ, 0, 0, 0,

...
x d)]

+ [N(x, ẋ, ẍ, e1, e2, 0,
...
x d)−N(x, ẋ, ẍ, e1, 0, 0,

...
x d)]

+ [N(x, ẋ, ẍ, e1, e2, r,
...
x d)−N(x, ẋ, ẍ, e1, e2, 0,

...
x d)] .

After applying the Mean Value Theorem to each bracketed term of (148), the following expression
can be obtained

Ñ =
∂N(σ1, ẋd, ẍd, 0, 0, 0,

...
x d)

∂σ1

∣∣∣∣
σ1=v1

(x− xd)

+
∂N(x, σ2, ẍd, 0, 0, 0,

...
x d)

∂σ2

∣∣∣∣
σ2=v2

(ẋ− ẋd)

+
∂N(x, ẋ, σ3, 0, 0, 0,

...
x d)

∂σ3

∣∣∣∣
σ3=v3

(ẍ− ẍd) (149)

+
∂N(x, ẋ, ẍ, σ4, 0, 0,

...
x d)

∂σ4

∣∣∣∣
σ4=v4

(e1 − 0)

+
∂N(x, ẋ, ẍ, e1, σ5, 0,

...
x d)

∂σ5

∣∣∣∣
σ5=v5

(e2 − 0)

+
∂N(x, ẋ, ẍ, e1, e2, σ6,

...
x d)

∂σ6

∣∣∣∣
σ6=v6

(r − 0)
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where v1 ∈ (xd, x), v2 ∈ (ẋd, ẋ), v3 ∈ (ẍd, ẍ), v4 ∈ (0, e1), v5 ∈ (0, e2), and v6 ∈ (0, r). The
right-hand side of (149) can be upper bounded as follows

Ñ ≤
∥∥∥∥∥
∂N(σ1, ẋd, ẍd, 0, 0, 0,

...
x d)

∂σ1

∣∣∣∣
σ1=v1

∥∥∥∥∥
‖e1‖

+

∥∥∥∥∥
∂N(x, σ2, ẍd, 0, 0, 0,

...
x d)

∂σ2

∣∣∣∣
σ2=v2

∥∥∥∥∥
‖ė1‖

+

∥∥∥∥∥
∂N(x, ẋ, σ3, 0, 0, 0,

...
x d)

∂σ3

∣∣∣∣
σ3=v3

∥∥∥∥∥
‖ë1‖ (150)

+

∥∥∥∥∥
∂N(x, ẋ, ẍ, σ4, 0, 0,

...
x d)

∂σ4

∣∣∣∣
σ4=v4

∥∥∥∥∥
‖e1‖

+

∥∥∥∥∥
∂N(x, ẋ, ẍ, e1, σ5, 0,

...
x d)

∂σ5

∣∣∣∣
σ5=v5

∥∥∥∥∥
‖e2‖

+

∥∥∥∥∥
∂N(x, ẋ, ẍ, e1, e2, σ6,

...
x d)

∂σ6

∣∣∣∣
σ6=v6

∥∥∥∥∥
‖r‖ .
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The partial derivatives in (150) can be calculated from (147) as

∂N(σ1, ẋd, ẍd, 0, 0, 0,
...
x d)

∂σ1
=

∂M̄(σ1)

∂σ1

...
x d (151)

+
∂

.

M̄ (σ1, ẋd)

∂σ1
ẍd

+
∂

.

C̄ (σ1, ẋd, ẍd)

∂σ1
ẋd

+
∂C̄(σ1, ẋd)

∂σ1
ẍd

∂N(x, σ2, ẍd, 0, 0, 0,
...
x d)

∂σ2
=

∂
.

M̄ (x, σ2)

∂σ2
ẍd (152)

+
∂

.

C̄ (x, σ2, ẍd)

∂σ2
σ2

+
.

C̄ (x, σ2, ẍd)

+
∂C̄(x, σ2)

∂σ2
ẍd

∂N(x, ẋ, σ3, 0, 0, 0,
...
x d)

∂σ3
=

.

M̄ (x, ẋ) +
∂

.

C̄ (x, ẋ, σ3)

∂σ3
ẋ (153)

+C̄(x, ẋ) + B̄

∂N(x, ẋ, ẍ, σ4, 0, 0,
...
x d)

∂σ4
= α32M̄(x) (154)

∂N(x, ẋ, ẍ, e1, σ5, 0,
...
x d)

∂σ5
= 1− α21M̄(x)− α1α2M̄(x) (155)

−α22M̄(x)

∂N(x, ẋ, ẍ, e1, e2, σ6,
...
x d)

∂σ6
= (α1 + α2) M̄(x) (156)

+
1

2

.

M̄ (x, ẋ).

By noting that

v1 = x− c1 (x− xd) v2 = ẋ− c2 (ẋ− ẋd)
v3 = ẍ− c3 (ẍ− ẍd) v4 = e1 − c4 (e1 − 0)
v5 = e2 − c5 (e2 − 0) v6 = r − c6 (r − 0)
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where ci ∈ (0, 1) ∀i = 1, 2, ..., 6,, if the assumptions stated for the system model and the desired
trajectory are met, an upper bound for the right-hand side of (151)-(156) can be written as follows

∥∥∥∥∥
∂N(σ1, ẋd, ẍd, 0, 0, 0,

...
x d)

∂σ1

∣∣∣∣
σ1=v1

∥∥∥∥∥
� ρ1(x, ẋ, ẍ) (157)

∥∥∥∥∥
∂N(x, σ2, ẍd, 0, 0, 0,

...
x d)

∂σ2

∣∣∣∣
σ2=v2

∥∥∥∥∥
� ρ2(x, ẋ, ẍ)

∥∥∥∥∥
∂N(x, ẋ, σ3, 0, 0, 0,

...
x d)

∂σ3

∣∣∣∣
σ3=v3

∥∥∥∥∥
� ρ3(x, ẋ)

∥∥∥∥∥
∂N(x, ẋ, ẍ, σ4, 0, 0,

...
x d)

∂σ4

∣∣∣∣
σ4=v4

∥∥∥∥∥
� ρ4(x)

∥∥∥∥∥
∂N(x, ẋ, ẍ, e1, σ5, 0,

...
x d)

∂σ5

∣∣∣∣
σ5=v5

∥∥∥∥∥
� ρ5(x)

∥∥∥∥∥
∂N(x, ẋ, ẍ, e1, e2, σ6,

...
x d)

∂σ6

∣∣∣∣
σ6=v6

∥∥∥∥∥
� ρ6(x, ẋ)

where ρi(·) ∀i = 1, 2, ..., 6, are positive nondecreasing functions of x(t), ẋ(t), and ẍ(t). After
substituting (157) into (150), Ñ(·) can be expressed as

Ñ ≤ (ρ1(‖e1‖ , ‖e2‖ , ‖r‖) + ρ4(‖e1‖)) ‖e1‖ (158)

+(ρ2(‖e1‖ , ‖e2‖ , ‖r‖)) ‖ė1‖
+(ρ3(‖e1‖ , ‖e2‖)) ‖ë1‖
+(ρ5(‖e1‖)) ‖e2‖
+(ρ6(‖e1‖ , ‖e2‖)) ‖r‖ .

where (16)-(18) were utilized. The expressions in (16) and (72) can now be used to upper bound
the right-hand side of (158) as in (76).
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